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Abstract

Obstructive sleep apnea (OSA) is a respiratory disorder
highly correlated with multiple cardiovascular diseases. In
the last two decades, several alternatives have been pro-
posed to palliate the limitations of polysomnography, the
current gold standard for OSA diagnosis. Such alterna-
tives were mainly based on the heart rate variability in
combination with machine learning (ML) techniques, ob-
taining promising results. However, the majority of these
works used a cross-validation approach for the validation
of the proposed methods, and rarely tested them on exter-
nal sources of newly added data. Hence, some of the most
common algorithms found in the state of the art have been
evaluated with cross-validation and external validation in
this work. The obtained results have raised important con-
cerns on the real performance shown by the typical ML-
based OSA detection methods in more realistic scenarios.

1. Introduction

Obstructive sleep apnea (OSA) is a condition character-
ized by multiple respiratory arrests during sleep [1], which
prevalence is considered high, affecting from 9 to 38% of
the general population [1]. Patients suffering from OSA
can describe feelings of grogginess and daytime sleepi-
ness, which in turn can provoke bad job or school perfor-
mance, family problems, and road accidents in the most
severe cases [1]. Besides, this syndrome is also correlated
with multiple cardiovascular diseases (CVD), such as atrial
fibrillation, strokes, coronary diseases, and so forth [2].
Since CVD are the leading cause of global dead every
year [3], the early detection of comorbilities like OSA have
gained increasing popularity in recent years [4].

The OSA syndrome is highly infra-diagnosed, which
may be in part because polysomnography (PSG) is still
considered the gold standard method for OSA detec-
tion [1]. PSG is a resource-intensive procedure that re-
quires access to specialist facilities, like sleep laborato-
ries, as well as the presence of a clinical expert to monitor

the patient’s sleep overnight. On the grounds of the ele-
vated cost and complexity associated to PSG, the applica-
tion of this procedure is limited to the most wealthy pop-
ulation, aggravating the misdiagnosis problem. For this
reason, several alternatives have been proposed in the last
two decades [4]. Such alternatives were mainly based on
single-sensor approaches, being the single-lead ECG the
most effective according to the latest reviews on OSA de-
tection [5]. In this regard, the heart rate variability (HRV)
has been the most frequently employed physiological mea-
surement to detect OSA episodes, due to its clinical rela-
tionship with the autonomic nervous system, which is in
charge of breathing control [6].

Nevertheless, despite the rich amount of approaches
published in the state of the art, no one has been actu-
ally considered for clinical practice purposes to finally
replace the gold standard PSG. In this regard, the lat-
est research on OSA detection has been fundamentally
conducted through machine learning-based classifiers [4],
most of them following a conspicuous, consolidated pat-
tern, i.e., signal processing, feature extraction, classifica-
tion and model validation [5]. In such pattern, the vali-
dation stage is almost exclusively carried out with cross-
validation methods, but seldom with external sources of
newly added data [7]. Hence, the main goal of the present
work is to evaluate the most typical machine learning (ML)
approaches for OSA detection under a more realistic vali-
dation scenario, closer to clinical practice circumstances.

2. Methodology

2.1. Databases

Three freely available databases from the PhysioNet’s
repository were employed, i.e., the CinC Challenge 2000
(Apnea-ECG) [8], the MIT Polysomnographic Database
(MIT-BIH) [9], and the St.Vicent’s University Hospi-
tal/University College of Dublin (UCD-DB) [10], all con-
taining several ECG recordings with apneic annotations.

The Apnea-ECG database consists of 70 ECG record-
ings, 7 to 9 hours length, coming from 30 male and 5 fe-
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male subjects within 27 to 63 years old. This database
includes annotations made by clinical experts in a minute-
by-minute basis, assessing whether right at the beginning
of a minute of the ECG recording there was an apneic
epoch (A-labeled), or a normal epoch (N-labeled).

The MIT-BIH database consists of 18 PSG recordings
between 2 and 7 hours of duration obtained from 16 male
subjects within 32 and 56 years of age. Annotations were
also provided by clinical experts under a similar criteria to
Apnea-ECG’s database, but every 30 seconds.

Eventually, the UCD-DB consists of 25 full overnight
PSG recordings coming from 21 male and 4 female sub-
jects within 28 and 68 years of age. The single-lead
ECG was annotated in real-time following the Rechtschaf-
fen and Kales rules, indicating cardiorespiratory events of
varying kinds apart from apnea epochs.

In view of the differences between annotation systems,
these were adapted to the most limiting in time resolu-
tion, i.e., Apnea-ECG. Specifically, the MIT-BIH was re-
labeled by retrieving the original annotation every two
blocks of 30s, whereas the UCB-DB was re-labeled by re-
trieving the original annotation in a minute-by-minute ba-
sis. Thus, all databases were coherently annotated under
the same labeling criteria.

2.2. Signal processing

The ECG recordings were firstly re-sampled at 500Hz.
Secondly, the baseline wander and high frequency noise
were substracted from the original signal through a band-
pass, second-order Chebyshev filter with cut-off frequen-
cies of 0.5 Hz and 100 Hz. In the third place, the R-
peak detection was performed using the Pan-Tompkins al-
gorithm [11]. Eventually, the processed ECG recordings
were subdivided in segments of one-minute length, and
then submitted to a thorough visual revision, discarding
those segments that presented excessive noise or artifacts.

2.3. Feature extraction

From each ECG segment, multiple features were ex-
tracted following the guidelines found in the state of the
art. Most of these were already contemplated by the
Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology
(Task Force) [6]. Such features can be approached from
three different perspectives, i.e., the time domain, the fre-
quency domain, and the complexity domain. In the time
domain, the most commonly extracted features were the
mean value of the HRV (MEAN), the standard deviation
(SDSD), the median value (MED), and many others (see
Table 1); whereas in the frequency domain, the Task Force
contemplated three different bands of power spectral den-
sity (PSD), these were the very low frequency band (VLF,

0.003 – 0.04 Hz), the low frequency band (LF, 0.04 - 0.15
Hz), and the high frequency band (HF, 0.12 - 0.4 Hz).
Such bands were computed with both fast Fourier trans-
forms (FFT) and the Lomb-Scargle (LS) periodgram [12].
Last but not least, it was found that the sample entropy
(SampEn), and its bidimensional form, the quadratic sam-
ple entropy (QSampEn), were two of the most useful fea-
tures to detect apneic episodes [13]. However, further al-
ternative forms of entropy have gained some popularity
in recent years, such as the dispersion entropy (DispEn),
the distribution entropy (DistEn), and the fuzzy entropy
(FuzzEn) [14], among others (see Table 1). In addition,
some features of the recurrence plot of HRV have also been
extracted, such as the recurrence rate (R), the divergence
(DIV), and the determinism (DET) [15], among others.

Domain Feature Description

Time

MAX Maximum of RRi
MIN Minimum of RRi
MEAN Mean of RRi
MED Median of RRi
SDNN Standard deviation of normal RRi
SDSD Standard deviation of the differences be-

tween adjacent RRi
RMSSD Root mean square of differences be-

tween adjacent RRi
NN50 Pairs of adjacent NNi differing by more

than 50 ms
pNN50 Determined by dividing NN50 by the to-

tal number of all NNi
IQR Interquartile range

Frequency

VLF FFT very low frequency component
LF FFT low frequency component
HF FFT high frequency component
LS-VLF LSP very low frequency component
LS-LF LSP low frequency component
LS-HF LSP high frequency component

Complexity

SampEn Sample entropy
QSampEn Quadratic SampEn
NPSampEn Non-parametric SampEn
DispEn Dispersion Entropy
DistEn Distribution Entropy
FuzzEn Fuzzy Entropy
MFuzzEn Measure of Fuzzy Entropy
REC RP Recurrence rate
DET RP Determinism
ENTR RP Shannon entropy
L RP average diagonal line length
DIV RP divergence

Table 1. Summary of features extracted from HRV.

2.4. Classification tools

Five different machine learning classifiers were imple-
mented in this work, following the configuration employed
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in the majority of works present in the literature. Namely,
decision tree (DT), support vectors machine (SVM), the
k-nearest neighbors (KNN) algorithm, and two random
forest-based classifiers were implemented, i.e., the adap-
tive boosting (ADA), and bootstrap aggregation (BAG).

2.5. Validation tools

The generated models were validated through the typ-
ical performance parameters of accuracy (Ac), sensitiv-
ity (Se), and specificity (Sp) by following two different
frameworks, i.e., cross-validation [16] and external valida-
tion [17]. First, the 10-fold cross-validation was employed
to reproduce the methods and results published in the state
of the art. Secondly, the same models were tested with
databases totally alien to the original training set. This was
conducted in 6 different experiments, corresponding to all
possible combinations of databases. More specifically, in
all experiments, a model trained with a certain database
was validated with the remaining ones.

3. Results

The obtained results are presented in Tables 2- 6, where
the testing set is deduced as the complementary combi-
nation of the training set. As can be observed, external
validation results were drastically lower than those ob-
tained with the typical 10-fold cross-validation method.
The overall difference between validation methods was
nearly a 20% in Ac. However, in the worst case, almost
a 40% difference between validation methods was present
when the SVM model was trained with the UCD-DB and
validated with the Apnea-ECG & MIT-BIH databases.

Training dataset
Cross-validation (k=10) External validation

Ac (%) Se (%) Sp (%) Ac (%) Se (%) Sp (%)
Apnea-ECG 75.95 75.42 76.48 62.46 63.72 57.09
MIT-BIH 73.51 72.29 74.73 59.41 66.19 44.02
UCD-DB 74.75 76.09 73.41 52.11 42.87 66.64
MIT-BIH & UCD-DB 69.72 69.54 69.90 57.15 57.88 55.98
Apnea-ECG & UCD-DB 74.36 74.31 74.42 56.45 54.20 59.85
Apnea-ECG & MIT-BIH 74.66 74.28 75.04 62.38 63.58 52.38

Table 2. Results obtained with DT.

Training dataset
Cross-validation (k=10) External validation

Ac (%) Se (%) Sp (%) Ac (%) Se (%) Sp (%)
Apnea-ECG 78.56 81.23 75.90 72.64 81.67 34.21
MIT-BIH 73.48 75.75 71.20 69.85 94.38 14.21
UCD-DB 78.12 75.82 80.43 41.41 12.32 87.13
MIT-BIH & UCD-DB 72.85 72.78 72.92 66.55 84.10 38.79
Apnea-ECG & UCD-DB 77.47 79.56 75.37 59.69 74.16 37.81
Apnea-ECG & MIT-BIH 77.72 77.66 77.77 77.52 83.20 30.16

Table 3. Results obtained with SVM.

Training dataset
Cross-validation (k=10) External validation

Ac (%) Se (%) Sp (%) Ac (%) Se (%) Sp (%)
Apnea-ECG 81.73 79.68 83.78 64.19 64.26 63.87
MIT-BIH 79.43 79.42 79.42 64.31 73.87 42.63
UCD-DB 79.12 78.57 79.66 49.36 31.08 78.11
MIT-BIH & UCD-DB 74.97 75.00 74.94 61.83 62.94 60.06
Apnea-ECG & UCD-DB 80.23 80.80 79.66 62.40 57.77 69.41
Apnea-ECG & MIT-BIH 80.38 79.67 81.09 65.15 66.51 53.77

Table 4. Results obtained with KNN.

Training dataset
Cross-validation (k=10) External validation

Ac (%) Se (%) Sp (%) Ac (%) Se (%) Sp (%)
Apnea-ECG 81.37 81.42 81.32 68.11 69.96 60.24
MIT-BIH 78.46 78.43 78.49 64.22 75.09 39.57
UCD-DB 80.16 80.54 79.79 50.45 28.80 84.49
MIT-BIH & UCD-DB 75.21 74.66 75.76 65.42 66.74 63.33
Apnea-ECG & UCD-DB 79.74 79.83 79.64 64.66 59.23 72.88
Apnea-ECG & MIT-BIH 80.66 80.72 80.59 71.21 73.89 48.91

Table 5. Results obtained with ADA.

Training dataset
Cross-validation (k=10) External validation

Ac (%) Se (%) Sp (%) Ac (%) Se (%) Sp (%)
Apnea-ECG 83.42 82.16 84.67 67.20 69.05 59.32
MIT-BIH 81.16 80.59 81.74 63.90 74.62 39.58
UCD-DB 82.24 82.16 82.32 50.80 28.73 85.51
MIT-BIH & UCD-DB 77.31 78.08 76.53 63.33 64.26 61.86
Apnea-ECG & UCD-DB 81.96 81.54 82.39 64.34 60.47 70.21
Apnea-ECG & MIT-BIH 82.40 81.19 83.61 68.76 70.65 53.08

Table 6. Results obtained with BAG.

4. Discussion

In view of the obtained results, regardless of the em-
ployed classifier, models validated with cross-validation
presented more optimistic results compared to those ob-
tained under the external validation approach. This means
that the same models trained and validated with recordings
coming from similar subjects do not properly generalize
the OSA detection problem in newly added data, such as
in the clinical practice scenario. The bias present in cross-
validation methods was strongly influential in the numer-
ical results, giving misleading insights of the real gener-
alization capability of the assessed models. Thus, it is
strongly recommended to contrast validation results with
further external sources of information whenever possible.

Although the external validation method may bring
lower results, these are more realistic and faithful. In fact,
this latter approach is advocated by Transparent Reporting
of a multivariate prediction model for Individual Progno-
sis Or Diagnosis (TRIPOD) initiative [17]. Hence OSA
detectors based on solely one of the databases involved in
this paper are susceptible to bias and lack of enough gen-
eralization in clinical practice, which is in line with former
studies on the well-known Apnea-ECG database [18].

On the other hand, among the variations in the perfor-
mance parameters, it is possible to observe that the small-
est databases provided also the lowest results in both cross-
validation and external validation approaches, thus indicat-
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ing a clear correlation between generalization capability
and model performance. The UCD-DB database meant the
smallest training dataset in terms of hours of ECG record-
ings, whereas the Apnea-ECG was the biggest one and the
models trained on it provided higher results and more sta-
ble values of Se and Sp. Hence, for proper generaliza-
tion of ML-based OSA detectors, further and bigger public
databases are still required.

5. Conclusions

The present work has evaluated the most common ML-
based methods in the context of OSA detection from the
single-lead ECG. Multiple features from the HRV have
been extracted in accordance to the guidelines found in the
state of the art. The generated models have been validated
from two different perspectives, the popular 10-fold cross-
validation and the external validation approach. The re-
sults have proven that the models based on cross-validation
were not sufficiently general to properly discern between
apnea and normal epochs in newly added data and external
validation is essential to provide a realistic view of their
performance. Moreover, larger public databases seem still
to be required to improve the generalization ability of ML-
based OSA detectors.
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